مقایسه ی روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و درخت تصمیم گیری در شناسایی ابر در تصاویر ماهواره ای لندست 8
نویسندگان
چکیده مقاله:
مقالهی پیشرو به مقایسهی سه روش ماشین بردار پشتیان،شبکهی عصبی مصنوعی و درخت تصمیم گیری با هدف شناسایی ابر میپردازد. وجود ابر در تصاویر ماهوارهای اپتیکی، پیشپردازشهای رادیومتریکی در کاربردهای سنجش از دور را ایجاب میکند. معمولا شناسایی ابر در تصاویر ماهوارهای با استفاده از روشهای طبقهبندی نظارت شده امکان پذیر میباشد. در این مقاله تصاویر ماهوارهای لندست 8 از دو منطقهی واقع در رشتهکوههای البرز، با استفاده از سه روش شبکهی عصبی مصنوعی، ماشین بردار پشتیبان (SVM) و درخت تصمیمگیری طبقهبندی شده و کارایی این سه روش از لحاظ دقت کلی، دقت تولید کنندهی ابر و برف و میزان ضریب کاپا مقایسه گردیده است. در منطقهی اول، دو روش شبکهی عصبی و SVM، دقت کلی و دقت تولید کنندهی ابر بالاتری نسبت به روش درخت تصمیم نشان داده و در منطقهی دوم روش درخت تصمیم قابلیت بیشتری در شناسایی ابر داشتهاست. این موضوع نشان دهندهی آن است که در منطقهی اول، حد آستانههای به کار رفته در درخت تصمیم، به خوبی ابر را مورد شناسایی قرار نمیدهند. در حالی که در منطقهی دوم شاخصهای ذکر شده در این روش، از میزان بالاتری برخورداراند. نتایج این تحقیق نشان میدهد که روش درخت تصمیم میتواند به دقتی قابل مقایسه و یا بالاتر از روشهای داده کاوی (مثل شبکهی عصبی وSVM ) دست پیدا کند و با این وجود حد آستانههای به کار رفته در این روش ممکن است برای همهی مناطق مناسب نباشند. در مقابل، روشهای داده کاوی به خصوص روش SVM قابلیت خوبی برای شناسایی انواع ابر در حالت طبقهبندی دو کلاسه از خود نشان دادند؛ اما افزایش تعداد کلاسها میتواند دقت شناسایی ابر را در این روشها کاهش دهد.
منابع مشابه
مقایسه ی روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و درخت تصمیم گیری در شناسایی ابر در تصاویر ماهواره ای لندست ۸
مقالهی پیشرو به مقایسهی سه روش ماشین بردار پشتیان،شبکهی عصبی مصنوعی و درخت تصمیم گیری با هدف شناسایی ابر میپردازد. وجود ابر در تصاویر ماهوارهای اپتیکی، پیشپردازشهای رادیومتریکی در کاربردهای سنجش از دور را ایجاب میکند. معمولا شناسایی ابر در تصاویر ماهوارهای با استفاده از روشهای طبقهبندی نظارت شده امکان پذیر میباشد. در این مقاله تصاویر ماهوارهای لندست 8 از دو منطقهی واقع در رشتهک...
متن کاملشناسایی گردوغبار در تصاویر ماهواره ای modis با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری
یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیده ی گردوغبار است. در سال های اخیر این پدیده در ایران ابعاد تازه ای گرفته و از یک معضل محلی، به مسئله ای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن می باشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهواره ای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...
متن کاملمقایسه روشهای طبقهبندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربریهای اراضی از تصاویر ماهوارهای لندست TM
Land use classification and mapping mostly use remotely sensed data. During the past decades, several advanced classification methods such as neural network and support vector machine (SVM) have been developed. In the present study, Landsat TM images with 30m spatial resolution were used to classify land uses through two classification methods including support vector machine and neural network...
متن کاملشناسایی گردوغبار در تصاویر ماهوارهای MODIS با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری
یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیدهی گردوغبار است. در سالهای اخیر این پدیده در ایران ابعاد تازهای گرفته و از یک معضل محلی، به مسئلهای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن میباشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهوارهای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...
متن کاملمقایسة روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8
تهیة نقشه کاربری/پوشش اراضی، برای برنامهریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهورهای و تکنیکهای سنجش از دور،به دلیل فرآهم آوردن دادههای بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گستردهای در تمامی بخشها از جمله بخشهای کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقهبندیکنندههای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشةکاربری/پوشش اراضی شهرستانهای اردبیل، ن...
متن کاملمقایسه روش های طبقه بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری های اراضی از تصاویر ماهواره ای لندست tm
طبقه بندی و تهیه نقشه کاربری های اراضی یکی از پرکاربردترین موارد در استفاده از داده های سنجش از دور است. تعدادی از روش های پیشرفته تر طبقه بندی در دهه های گذشته توسعه پیداکرده اند که از آنها می توان به شبکه های عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستtm باقدرت تفکیک 30 متر جهت استخراج کاربری های اراضی با استفاده از دو روش طبقه بندی شبکه عصبی مصنوعی و ماشین بردا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 4
صفحات 25- 36
تاریخ انتشار 2016-11
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023